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Rigorous Results for General Ising Ferromagnets 
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Several new results are given concerning the Lee--Yang theorem, the GHS 
inequality, and spin-~ approximations for general Ising ferrornagnets, and 
the extension of these re'suits to vector spin models is discussed. 

KEY W O R D S :  Spin systems; general Ising ferromagnets; Lee-Yang 
theorem ; vector spin models. 

1. I N T R O D U C T I O N  

Consider a system of classical single-component spins &, labeled by points i 
in some finite lattice A, for which the thermal average at inverse temperature 
fi = 1 /kT  of any function F({&}) of the spins is given by 

( F }  = Z -1 ... F({s~}) e x p ( -  ap(sO (1) 
oO co 

where the Hamiltonian ~ has the form 

= - ~ ,  J,,S,S, - ~ h,S, (2) 

and the partition function Z is given by 

f) f[ Z = Z({h,}) . . . .  exp[ - f i~ ( { s , } ) ]  dp(s,) (3) 
oO oo  

Here p is some even positive measure on the real line [assumed to satisfy 

f exp(bs 2) dp(s) < oo for some b > 0 so that Z will be finite at least for small 
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/3] which is independent of fl and is determined by the " in ternal"  properties 
of the spins. 

Such a system constitutes a (finite) general Ising model with pair inter- 
actions J~j in an external magnetic field h,. In spin-K/2 models, where each 
spin can only have the values K, K - 2 ..... - K ,  

p(s) = 3 ( s - K ) +  8 ( s - K + 2 ) + . . . +  3 ( s + K )  

while in "classical" continuous spin Ising models, 

1, Is[ ~ 1 
dplds = 0, Isl > 1 (4) 

General Ising models have become the object of considerable study during 
recent years in constructive quantum field theory, where they represent the 
"lattice approximations" to various Euclidean field modelsm; there dp/ds 
typically has the form e x p [ -  ;~V(s)], where f is a polynomial or some other 
analytic function such as cosh s. This paper will only deal with ferromagnetic 
models, i.e., those in which J,j >i 0 for i # j ,  but the sign of the "self- 
interaction" couplings Ju will be unrestricted. This freedom for the J**, 
although irrelevant for spin~ models (where S, 2 = 1 so that the self-coupling 
terms only contribute an overall constant to ~ ) ,  is natural for certain spin-1 
models of liquid helium mixtures and ternary alloys (2) as well as for quantum 
field models, m 

Essentially all rigorous results for Ising models were first proved in the 
spin-�89 case and our main concern in this paper is to determine the classes of 
p's to which various of these results extend. We will consider in Section 2 the 
Lee-Yang "circle"  theorem ~a) and in Section 3 the GHS inequality, ~ but 
will not discuss at all those results (such as the GKS and F K G  correlation 
inequalities) which are valid for all O's. The characterizations given in the 
theorems of Sections 2 and 3 are complete and explicit; the proofs of these 
theorems are only sketched to avoid lengthy discussions of technical details. 
We will then consider in Section 4 a class of O's to which essentially all spin-�89 
results apply. The measure, e x p ( - a s  4 - bs 2) ds with a > 0, was shown by 
Simon and Griffiths (5~ to belong to this class and each of the theorems in this 
paper can be considered as an extension and/or clarification of their result. 
It should be pointed out that our results come out particularly neatly pre- 
cisely because we do not restrict the sign of the J , ;  for a review of the situation 
under the requirement Ju /> 0 see Ref. 6. In Section 5 we discuss the extension 
of the theorems of this paper to vector spin models. 

2. L E E - Y A N G  P R O P E R T Y  

Lee and Yang ~3) proved that for a spin-�89 Ising model with pair ferro- 
magnetic interactions, the zeros in the complex h plane of the partition 
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function Z({h~,}) (for any fixed nonnegative ~.) are all pure imaginary (in a 
lattice gas model, the imaginary axis for h is transformed into the unit circle 
for the activity variable); we will say that a partition function Z({h~}) has the 
Lee-Yang property if it also satisfies the above conclusions of the spin-{ 
"circle" theorem. The following theorem gives necessary and sufficient 
conditions for the Lee-Yang property. 

Theorem 1. Z({h~}) will have the Lee-Yang property for any choice of 
J~j (with J~j >/ 0 for i # j and J~ arbitrary) if and only if either 

p = c [ ~ ( s  - So) + 8(s + So)] (5) 

for some C > 0 and So >i 0, or else 

dp/ds = Cs 2m exp( -  as 4 - bs 2) I - I  (1 + s2/% 2) exp(-  s2/% 2) (6) 
J 

for some C >  0, m = 0,1, 2,..., a >/ 0, b arbitrary, and real a s with 
~s ( l / ah '  < oo. 

Proof .  It follows from the results of Ref. 7 that it is both necessary and 

sufficient that [ exp(hs - cs 2) dp(s)  have only pure imaginary zeros in h for 

any c/> 0. The class of p's satisfying this condition is shown in Ref. 8 to 
consist exactly of those given in (5) and (6); for convenience, we now give a 
short sketch of the proof. The key ingredient is to write p as the limit of 
measures p~ (as c--~ oo), where 

dpc/ds = (c/,r)l/2 f exp[-c(s  - 021 dp(t )  = Fc(s)  exp( -cs  2) (7) 

with Fc proportional to f exp(2cs t  - ct 2) dp( t )  and thus having only pure 

imaginary zeros in s, so that, by Ref. 9, Prop. 2, 

dpc/ds = Ko exp(-dcs 2) 1--I [1 + s2/aj(c) 2] (8) 

Since such a pc is known to yield the Lee-Yang property (e.g., by Ref. 7, 
Prop. 2.4), the remainder of the proof consists in showing that the limits of 
such pc's are exactly the measures of (5) and (6). A complete proof of this 
last fact is given in Ref. 8; we only note here that 

(1 + x2/nl12) n e x p ( - n l / 2 x 2 )  ~ exp(-x4/2). 

R e m a r k .  One immediate consequence of this theorem, which is relevant 
in the context of quantum field theory, is that for dp/ds = exp[ -  ) tV(s)  - cs2], 
the Lee-Yang property is valid for all A, c > 0 if and only if V(s )  = as 4 + 
bs 2. This disproves, for example, the conjecture of Ref. 6 that V(s )  = 
cosh s + bs 2 also gives such a Lee-Yang property. 
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3. G H S  I N E Q U A L I T Y  

The GHS inequality (~) states that for any choice of i, j, k, 

(Oa/bh~ ~h~ 9h~) in Z({h,}) ~< 0 when hz /> 0 for all I; 

it was first proved for spin-�89 models and implies that the magnetization is a 
concave function of the (positive) external field. The next theorem, which 
gives necessary and sufficient conditions for the GHS inequality, is taken from 
Ref. 10. 

T h e o r e m  2. The GHS inequality is valid for any choice of Jij (with 
J~j 1> 0 for i # j and J~ arbitrary) if and only if either p is as in (5) or else 

( C e x p t - f ; g ( t ) d t ] ,  Isl < A 
de/ds 

= 10 ,  Is[ A 
(9) 

with C > 0, 0 < A ~< + oo, and g an odd function [with g(0) = 0] which is 
convex on [0, A). 

Proof. The proof  that the GHS inequality is valid for p as in (9) was 
given in Ref. 11 for continuous g and extended in Ref. 10 to the general case. 
To see that p must either be as in (5) or (9), it suffices to show that these are 
the only measures such that 

(d3/ah 3) Inf exp(hs - cs 2) do(s) <<. 0 when h >t 0 

for any c >/ 0; we proceed to sketch a proof  which is given in complete detail 
in Ref. 10. As in Theorem 1, O = limc~ ~ pc with pc given by (7), but this time 
we note that (da/ds 3) In Fc(s) <~ 0 for s >1 0, so that 

dpclds = Kc e x p [ - f / g c ( t ) d t ]  

with gc odd and convex on [0, oe); the remainder of the proof consists in 
showing that the limits of such pc'S arc exactly the measures of (5) and (9). 

Remark. The Ising models of Theorem 2 not only satisfy the GHS 
inequality, but also the other correlation inequalities of Ref. 12; this can be 
seen by combining the results of Refs. 11 and 13. There also exists a class of 
Ising models which satisfy a "reverse"  GHS inequality; we do not include 
the analog of Theorem 2 for these models (1~) since they seem to be of little 
physical interest. 
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4. SPIN-�89 A P P R O X I M A T I O N S  

There exist spin-�89 results, such as the Gaussian correlation inequalities 
of Ref. 15 and the Ursell function inequality of Refs. 16-18, which cannot be 
extended to general Ising models through the use of the above theorems. To 
extend these results from the spin-�89 case, we now consider a class of p's to 
which essentially all known spin-�89 results extend; these are measures which 
can be constructed out of (or at least approximated by) spin-�89 models in the 
spirit of Griffiths' "ana log"  spin-�89 systems. (s'lm We call such a p ferro- 
magnetic (in Ref. 15 it is called mean zero ferromagnetic) and define it 
formally as a measure such that there exists a sequence (indexed by n) of 
(finite) "ana log"  spin-�89 Ising models [with lattice index j in A(n)] with pair 
ferromagnetic interactions so that for some choice of ~j(n) /> 0, 

f exp(hs)do(s)/f do(s) (10) 

as n -+ oo (with the convergence uniform on bounded subsets of the complex 
h plane). 

Griffiths proved that the spin-K/2 measures and the "classical" con- 
tinuous spin measure of (4) are ferromagnetic, (lm so that the results of ferro- 
magnetic spin-�89 models extend to such models (at least when J~j >>. 0, including 
i = j) .  In order for spin-�89 results to be valid with arbitrarily negative Ju, we 
should choose O's such that [exp(-cs2)]p(s)  is ferromagnetic for any c t> 0; 
we will denote by 4 the class of such p's. The first nontrivial examples of 
measures in 4 ,  discovered by Simon and Griffiths, (a~ are given by dp/ds = 
exp( -a s  ~ - bs 2) with a > 0. The next theorem states various properties of 
4 ;  its main interest, however, lies in the fact that it yields an amazingly 
simple proof of the Simon-Griffiths result and, as we explain below, of the 
related Dunlop-Newman result for vector spin models. (2~ 

Theorem 3. The measure of (5) is in 4 ;  in order for any other p to 
belong to 4 ,  it is necessary that d o = f ( s ) d s  with f ( s )  =- dp/ds satisfying 
the conditions of both (6) and (9). If  p(s) and f (s)  ds are in 4 and/z is ferro- 
magnetic, then the following are also in 4 :  

[ f exp (J s t )d tL ( t ) ] . p ( s )  for J ~ > 0  (11) 

(assuming that this defines a finite measure) and 

f ( s )p ( s )  (12) 

In addition, the following measures belong to 4 :  

K e x p ( - c s = / 2 )  ds for K, c > 0 (13) 

K e x p ( - a s  ~ - bs 2) ds for K, a > 0 (14) 
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Finally, we note that any v in o~ can be obtained as the limit of measures as 
in (11) with/z in ,~  and p as in (13). 

P r o o f .  The first part of the theorem follows easily from the definition of 
o~ together with Theorems 1 and 2. We next note that a measure v with 

f exp(hs) dr(s) = f f  exp(hAls~ + hA2s2 + Jszs2) d~(s~) dl~2(s2) (15) 

will be ferromagnetic providing J, A~, A2 /> 0, and the/z~ are ferromagnetic; 
this is so because the two analog spin-�89 systems for the/~ can be combined in 
an obvious way to give an analog system for v. By choosing ?,1 = 1, A2 = 0, 
/L~ = p, and/~2 = t z, we obtain (11). If/z in (11) is ino~,  then we also clearly 
have that (dlzc/ds). p(s) is in ~ with/~ defined as in (7); taking d/~ = f ( s )  ds 
and letting c --> oo then gives (12). To see that (13) belongs to o~, we note that 

exp(h2/2c) = lim [cosh(h/cn~/2)] ~ (16) 

so that in line with (10) we choose the analog systems to consist of n un- 
coupled spins in a constant external field, h~ = h/cnl/L To obtain (14) we 
apply formula (11) m times with/~(t) = [8(t - 1) + ~(t + 1)]/2 and starting 
with p as in (13) to see that 

K [cosh(Js)] m e x p ( -  cs2/2) ds 

is in o~; letting J = (12a/m) 1/4, c = 2[(12am) lr2 + b], and taking the limit 
as m--> oo [by writing out the Taylor series for In cosh(Js)] yields (14) as 
desired. The final statement of the theorem follows directly by writing 
v = limc~ ~o vc with vc defined as in (7). 

Remark. An amusing example of a measure in o~ different than (but 
related to) (14) can be obtained by using the methods of Ref. 10. Namely, if 
f~(s) is the (positive) ground-state wave function of a quartic anharmonic 
oscillator Hamiltonian, - (d2/ds 2) + As 4 + Bs ~ (with A > 0), then f~(s) ds 
~ .  The resulting infinite product representation of f~, based on (6), seems 
potentially useful for numerical analysis purposes. A simple extension of 
Theorem 1 shows that a similar representation is also valid for the first 
excited state. 

5. V E C T O R  SPIN M O D E L S  

In this section, we briefly discuss the situation as regards vector spin 
models where the S~ are replaced by D-component spins S, = (S~ ~ ..... S f ) .  
For  simplicity we suppose that the measure p(s~) of (3) is replaced by a 
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spherically symmetric p(s3, and that the Hamiltonian of (2) is replaced by 

J,;s, .s ,-  h,S,  
LJ i 

A Lee-Yang theorem is presently only known to be valid for D ~< 3 
and only for dp(s) = C ~(]s[ - So) (classical rotator  models) or measures, 
such as d p ( s ) =  exp( -a ] s [  4 -  bls[2)ds, which can be constructed from 
" a n a l o g "  classical rotator models. (2~ The results of  Ref. 7 have unfortunately 
not been extended to D > 1 to provide sufficient conditions for the validity of  

the Lee-Yang property in terms of the zeros of  f exp(hs 1) d0(s); thus the 

sufficiency part  of  Theorem 1 has at present no equivalent result for D > 1. 
On the other hand, in the context of  Theorem 1, it is clearly necessary that 
6c(h) = f exp(hs 1 - clsl 2) d0(s) have only pure imaginary zeros in h for every 

c /> 0, so that since, by spherical symmetry, f exp(s.t  - cltl 2) dp(s) -- ~c(Itl),  
we may apply the methods of Theorem 1 to conclude that p must either be a 
classical rotator or else dp/ds must have the form of (6) with s replaced by [s]. 

The status of  Theorem 2 is that at present no version of the GHS 
inequalities are known with D > 1. For a discussion of the status of  other 
correlation inequalities, see Refs. 20-23. 

The notion of  ferromagnetic measures is extended to D > 1 in a straight- 
forward manner by considering " a n a l o g "  classical rotator systems. Theorem 
3 then carries over in toto with certain obvious changes, such as replacing s 
by Is[; the proof  is essentially identical except that 

= ( [exp(hs)] [3(s - 1) + ~(s + 1)] ds/2 cosh h 
d 

is replaced by 

1 j [exp(h-s)]  (Isl - 1) ds.  

We thus obtain a significant simplification of  the Dunlop-Newman proof  
that e x p ( - a l  s l 4 _ b ls[ 2) ds has a classical rotator  approximation. 
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